In geometry, you come across different types of triangles. The right-angle triangle is also one among them. In trigonometry, we study the sides and angles of a triangle. We use right-angle triangles to find the elemental ratios of trigonometry, which are then used in deriving various trigonometric identities and formulas. Let us learn the trigonometric identities and formulas in detail now.
Definition of Trigonometric Identities
The Trigonometric Identities are the equations that apply to Right Angled Triangles. Various trigonometric identities are employed in trigonometry formulas to solve problems based on the sides and angles of right-angled triangles. For the given tips, these trigonometry formulas include the fundamental trigonometric ratios of sine, cosine, tangent, secant, cosecant, and cotangent. All trigonometric ratios are defined using the sides of the right angle triangle, which has an adjacent side, opposite side, and hypotenuse side.
Sum and Difference Formulas of Trigonometry
sin(A + B) = sin(A) cos(B) + cos(A) sin(B)
sin(A – B) = sin(A) cos(B) – cos(A) sin(B)
cos(A + B) = cos(A) cos(B) – sin(A) sin(B)
cos(A – B) = cos(A) cos(B) + sin(A) sin(B)
tan (A + B) = tanA + tanB/ 1-tanAtanB
tan (A + B) = tan A – tanB/1 + tanAtanB
Reciprocal Identities of Trigonometry
Reciprocal Identities of Trigonometry are
1. sin θ = 1/cosecθ or cosecθ = 1/sin θ
2. cos θ = 1/sec θ or sec θ = 1/cos θ
3. tan θ = 1/cot θ or cotθ = 1/tan θ
Trigonometric Ratio Identities
The trigonometric ratio Formulas are:
1. tan θ = sinθ/cosθ
2. cot θ = cosθ/sinθ
Pythagorean Identities of Trigonometry
You can derive the Pythagorean trigonometric identities from the Pythagoras theorem. Applying Pythagoras’ theorem to the right-angled triangle ABC, where BAC = θ
BC2 + AC2 = BA2
Dividing Both Sides By Hypotenuse2
BC2/BA2 + AC2/BA2 = BA2/BA2
1. sin2θ + cos2θ = 1
It is one of the Pythagorean identities. Similarly, we can derive two other Pythagorean trigonometric identities.
2. 1 + tan2θ = sec2θ
3. 1 + cot2θ = cosec2θ
Trigonometric Identities of Opposite Angles
The Opposite Angle Trigonometric Formulas are:
1. Sin (-θ) = – Sin θ
2. Cos (-θ) = Cos θ
3. Tan (-θ) = – Tan θ
4. Cot (-θ) = – Cot θ
5. Sec (-θ) = Sec θ
6. Cosec (-θ) = – Cosec θ
Trigonometric Identities of Complementary Angles
In geometry, two angles are said to be complementary if their sum is equal to 90 degrees. The complementary angles of trigonometry are
1. sin (90 – θ) = cos θ
2. cos (90 – θ) = sin θ
3. tan (90 – θ) = cot θ
4. cot ( 90 – θ) = tan θ
5. sec (90 – θ) = cosec θ
6. cosec (90 – θ) = sec θ
Trigonometric Identities of Supplementary Angles
Two angles are supplementary if their sum is equal to 1800. The supplementary angles of trigonometry are
1. sin (1800- θ) = sinθ
2. cos (1800- θ) = – cos θ
3. cosec (1800- θ) = cosec θ
4. sec (1800- θ)= – sec θ
5. tan (1800- θ) = – tan θ
6. cot (1800- θ) = – cot θ
Double Angle Trigonometric Identities
When the angles are doubled, then the trigonometric identities for sin, cos, and tan are written as
1. sin 2θ = 2sinθ cosθ
2. cos 2θ = cos2θ – sin2θ = 2cos2θ – 1 = 1 – 2sin2θ
3. tan 2θ = 2tanθ/1 – tan 2θ
Half Angle Identities
If the angles are halved, then the trigonometric identities for sin, cos, and tan are as given below:
1. sin(θ/2) = ± √[(1 – cosθ)/2]
2. cos(θ/2) = ± √(1 + cosθ)/2
3. tan(θ/2) = ± √[(1 – cosθ)(1 + cosθ)]
Product-Sum Trigonometric Identities
In trigonometric identities, the sum or difference of sines or cosines becomes a product of sines and cosines.
1. Sin A + Sin B = 2sin(A + B)/2 . cos(A-B)/2
2. Cos A + Cos B = 2cos(A + B)/2 . cos(A-B)/2
3. Sin A – Sin B = 2cos(A + B)/2 . sin(A – B)/2
4. Cos A – Cos B = -2sin(A + B)/2 . sin(A – B)/2
Trigonometric Formulas of Products
Trigonometric product identities are:
1. Sin A. Sin B = cos(A – B) – cos(A+B)/2
2. Sin A. Cos B = sin(A + B) – sin(A – B)/2
3. Cos A. Cos B = Cos(A + B) – Cos(A – B)/2
For more information, you can log on to the Cuemath website.